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The available configuration space for finite systems of rigid particles separates into 
equivalent disconnected regions if those systems are highly compressed. This paper 
presents a study of the geometric properties of the limiting high-compression regions 
(polytopes) for rods, disks, and spheres. The molecular distribution functions represent 
cross sections through the convex polytopes, and for that reason they are obliged to 
exhibit single-peak behavior by the Brtinn-Minkowski inequality. We demonstrate 
that increasing system dimensionality implies tendency toward nearest-neighbor 
particle-pair localization away from contact. The relation between the generalized 
Euler theorem for the limiting polytopes and cooperative "jamming" of groups of 
particles is explored. A connection is obtained between the moments of inertia of the 
polytopes (regarded as solid homogeneous bodies) and crystal elastic properties. 
Finally, we provide a list of unsolved problems in this geometrical many-body theory. 

KEY WORDS: Rigid spheres; Rigid disks; Rigid rods; Elasticity; High pressure; 
Polytopes; Convexity; Crystal anharmonicity; Pair correlation functions; Multidi- 
mensional geometry; Crystalline order; Crystal defects. 

1. I N T R O D U C T I O N  

The hard-sphere system has been one o f  the most  impor tant  and convenient models 
available to the theoretician during the development o f  modern  statistical mechanics. 
Its attractiveness is largely due to easy visualization of  energetically allowed particle 
configurations. Also, the relevant mathematical  analysis, while generally far f rom 
trivial, is still relatively simpler than corresponding analysis for other molecular 
models which specify "sof ter"  collisions. 

The major  por t ion  o f  past  theoretical effort on  the hard-sphere model has been 
devoted to the fluid state. (1) However,  this model  has the fascinating virtue o f  crystal- 
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lizing under sufficient compression, and probably the resulting solid phase has a far 
richer variety of interesting phenomena to study than the fluid. The hard-sphere 
crystal also commands special attention because of its extreme anharmonicity; 
comparison of its properties with those of the conventional harmonic crystal models 
should illuminate the role of varying anharmonicity in real solids. 

This paper will survey one aspect of the classical hard-sphere solid, namely, its 
behavior in the high-compression limit. In doing so, we shall actually consider the set 
of related "sphere" systems of varying dimensionality v, such that v = 1, 2, 3,..., 
correspond respectively to rigid rods on a line, disks in a plane, spheres in 3-space,.... 
Our unifying point of view for this sequence will be that of the geometer studying the 
properties of the allowed region in the multidimensional configuration space. The 
high-compression limit provides the advantage that this allowed region reduces to a 
set of identical disjoint convex polytopes (multidimensional "polyhedra") for which 
a substantial body of deep geometrical theory is available. 

A further advantage of the high-compression limit for v > 1 is the freedom to 
freeze various defects into the crystal. Simple vacancies and dislocations are immobile 
in this limit, and may be placed at will. It then becomes possible to study their effect 
on free energy and elastic properties, and to make comparisons with continuum defect 
theory. (~) 

The hard-sphere system and its lower-dimensional analogs have been favorite 
subjects for electronic computer simulation of many-body problems. We are therefore 
fortunate that increasing attention is being devoted to computation of their solid-state 
properties. (~,4) The expanding area of agreement between these computer studies and 
pure theory of the type to follow in this paper we believe is valuable not only by lending 
added credence to both approaches, but also by stimulating further activity and 
interest in these specialized solid-state studies. 

Attention in this paper will be restricted entirely to equilibrium properties of the 
high-compression crystals. Nevertheless, we view the geometric considerations below 
as a necessary preliminary to fabrication of a general kinetic theory of the rigid-sphere 
crystal. In particular, this task would require construction of at least approximate 
eigenfunctions for the Liouville operator inside the configuration space polytope 
which is the primary object of attention in this paper. 

Unfortunately we are unable to eliminate a basic Iogical weakness in the high- 
compression theory. This is associated with the fact that as the number of particles 
Nin the system (when v ~ 1) tends to infinity, one is strictly confined to a smaller and 
smaller density interval around close packing. (5' Just below the close-packed density, 
for sufficiently large N, the normally small polytope face curvatures conspire in certain 
special directions to produce thin "tubes" or "filaments" which actually connect the 
polytopes. However, there is no reason to believe that these narrow connections have 
any weight in determining the usual system intensive properties. Therefore we shall 
formally disregard this feature in anticipation of an ultimate demonstration of the 
commutability of the N--~ ~ and the high-compression limits for the stable crystal 
modifications. 
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2. E L E M E N T A R Y  FEATURES OF L I M I T I N G  POLYTOPES 

2.1. Definition of the Polytopes 

To the best of our knowledge, the previously cited paper by Salsburg and Wood (5) 
is the only publication which has explicitly considered the limiting high-compression 
geometrical structure of available configuration space for hard spheres. We now retrace 
some of that earlier work for completeness, as well as to incorporate some modifica- 
tions that are desirable for our present purposes. 

Let N rigid v-spheres be contained in a region g2 of Euclidean v-space. The 
canonical partition function gives the system's Helmholtz free energy F~r : 

N 

exp(--/3FN) = (A~UN')-I f drl "'" f drNexp !--p i~=1 ~o(~/)I (1) 

fl = ( k . r )  -1, A = h(2rrmk, r)-l/~ 

Here the v-vector r~ locates the center of sphere i. The hard-sphere pair potential 
is infinite for distances less than diameter a, but zero otherwise, so that the integrand 
in (I) may be expressed simply as a product of unit step functions: 

N 

exp(- FN) = f dr1 ... f 2 v(j r, f--  a) 
g2 .C2 i < j = l 

V ( x )  = o, x < o (2) 

= 1 ,  x ~ O  

It will be convenient to suppose that the system is subject to periodic boundary 
conditions. Compressions and decompressions then will be produced by changing the 
size of the periodicity cell D at constant shape. Furthermore this basic shape will be 
selected to conform to the global close-packing of the N spheres (and their periodic 
images) throughout all of v-space. For the moment we shall suppose that integer N 
allows packing into a perfect crystal, i.e., without vacancies or other defects. Figure 1 
illustrates cell s and the perfect packing for a set of N = 16 rigid disks in the plane; 
the figure also illustrates the freedom, aside from translation, that exists for v ~> 2 in 
selection of f2 according to which particles are considered basic, and which ones 
merely images. 

Although particles are held tightly against one another when ~Q has that minimum 
size ~Q0 producing close packing, the system as a whole may still freely translate as a 
result of the boundary conditions. Such translations allow any one particle to be moved 
from its original position to the position initially occupied by any of the other particles. 
If D's boundaries had been hard, impenetrable walls, there would have been N! 
independent ways of placing the particles in the packed state. But with periodic 
boundary conditions, there are only 

N ! / N  = ( N - -  1)! (3) 

independent ways that cannot be interconverted without system decompression. 
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Fig. 1. Periodicity cell ~ for N = 16 rigid disks in the plane. The boundary of ;2 is indicated by 
solid lines. An alternative choice (but dynamically identical) is shown by the dashed, rather than 
solid, oblique lines. 

The full configuration space for the system of N v-spheres is the (vN)-dimensional 
region generated by the direct product 

s = s x s x ".. x s (4) 

of s for the individual particles as subscripted. At close packing, the only points 
of s that are accessible to the system (that is, have no sphere overlaps) will be the 
( N -  1)! separate domains, each of dimensionality v, which correspond to the 
distinct, freely translating crystals. However, when s increases a small finite amount 
from s the spheres are free to move slightly relative to each other, and the accessible 
regions become narrow (vN)-dimensional hyperprisms. The lateral boundary of each 
hyperprism consists of the set of hypersurfaces for possible nearest-neighbor sphere 
contacts in the given crystal arrangement. From Eq. (2) we see that the analytic 
representation of these hypersurfaces is simply 

[ r i - - U ]  = a (5) 

If  z~ stands for the number of nearest neighbors in the v-sphere crystal, then there will 
be �89 hypersurfaces (5) bounding the hyperprism (if the crystal is more than one 
particle wide in each direction). 

One technical point deserves attention at this stage. Under translation of the 
crystal, the center-of-mass vector 

R -~ (rl + rz + -.- + r~)/N (6) 

undergoes frequent jumps, as spheres cross ~2's boundaries. As they do, the corre- 
sponding r~ jump to an opposite s boundary, and R is affected accordingly. Each of 
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the (N -- 1)! hyperprisms therefore actually occurs in N separate pieces inside ~Q*, 
but it is in the nature of the periodic boundary conditions that these N pieces could 
be reassembled by simple translations into the whole hyperprism. An alternative but 
equivalent statement is that in the full (vN)-dimensional configuration space filled by 
s and its periodic images, N! infinitely long hyperprisms pierce s 

In order to give a concrete illustration of the preceding we have presented the 
three-dimensional configuration space for three rigid rods on a line (v = 1, N = 3) in 
Fig. 2. In this case there are three possible neighbor contacts of type (5) for the two 
possible "crystals," or translatable rod orderings. Indeed one sees that the prismatic 
accessible regions have three lateral faces each, and cross sections in the shape of 
equilateral triangles. In the close-packed limit, it is clear that these hyperprisms 
shrink onto their axes, to leave merely a set of parallel lines. 

The axial length of each prism, properly assembled, for the example in Fig. 2 is 
3]/2~. For more general v and N, the hyperprism axial measure can be computed to 
be N~/2.Q. [The computation is initiated by configuration-space coordinate rotation as 
described by Eq. (124) below.] Then if S~)(s is the [v(N-  1)I-dimensional cross- 
sectional measure of the hyperprism, the partition function (2) may be expressed thus: 

exp(--/3FN) = N(v/2)-xs163 vN (7) 

Owing to the fact that S~)(s shrinks to zero size as ~ decreases to s it is 
convenient to transform from the original particle coordinates r~ ,..., rN to a reduced 
set of vectors tz ..... tg in terms of which the ~ --+ s limiting cross section remains 
finite. First, for given s ~ s and a specific ordering of spheres in the crystal, let the 
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Fig. 2. Configuration space for three rigid rods on a line, subject to periodic boundary conditions. 
The unit cube shown should be imagined periodically replicated so as to fill space entirely. The 
section shown is then taken perpendicular to the threefold "centroid motion" axis. 
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center-of-mass position R be held fixed. Furthermore we shall denote by .(o) .(0) 
the regular lattice positions for the crystal that would be obtained by homogeneous 
expansion of the close-packed crystal from -Q0 to [2. The conditions specifying that the 
system lie in an accessible region of configuration space are, for all neighbor pairs i, j, 

[ r(~ + c3rj -- ,3r~l - a >~ 0 

r(.O ) = r(.O ) _ r(O) 8r i : ri _ r<O ) (8) 
~J J i ~ Z 

When .(2 is very close to g2 0 it is obvious that the displacements ~ri of any particle from 
its nominal lattice position r~ ~ will be small; in fact, they should be roughly of the 
order of the length of free travel in the homogeneously expanded crystal. Thus we 
are justified in expanding the left member of Eq. (8) and retaining only linear terms 
in the deviations: 

[wi~- (r~ ~ + 3r 5 - -  ~ r i ) ]  - -  17 ~ 0 

= r(0)/i r!0.) i (9) 
W i j  i J  ~, z.~ 

Since we have 

X2/-Qo : (I r (~ I / a y  (10) i j  

the conditions (9) are equivalent in the high-compression limit to 

1 + wij  �9 (tj - tO o (11)  

where the reduced displacements are 

t i  : {v/a[(E2/E2o) - -  1]} ~ri (12) 

The set of linear inequalities in (11) defines a polytope p~l in the [ v ( N  - -  1)]- 
dimensional subspace for fixed system center of mass. (6~ This polytope is formed from 
the tangent hyperplanes (5) to the hypercylindrical surfaces (5) which actually bound 
the true cross section S~)(.Q). In the close-packed limit the curvature of S~ I's bound- 
aries becomes less and less important; in other words 

lim { ( a l v ) ( D I D o -  1)} '(N-z) P}~) = 1 (t3) 

From Eq. (7) we see that the high-compression free energy has the following behavior: 

N ( " / z ) - a D  a F2 _ 1)]v(N-1)p~)l 
--/3FN ~-~ In I •,N [v (~o-o (14) 

[There should be no confusion in the fact that we use symbol P~) both for the polytope 
a n d  its numerical content.] 

Polytope P~) is bounded by � 89  faces, each with dimensionality v(N -- 1) -- 1. 
We see from (11) that these faces are analytically specified by the linear relations 

1 q-  w , j .  (t~ - -  t ,)  = 0 (15)  
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for all the crystal's nearest-neighbor pairs (i, j), subject to the restraint 

N 

Z ti = 0 (16) 
i = 1  

so as to remain in the fixed center-of-mass space. It is worth noting that the --NP(1) 
for N rigid rods are examples of simplexes, (7) since they are bounded by the minimum 
possible number N of faces that can enclose a finite region in (N -- 1)-dimensional 
space. 

When the crystal is wider than two particles in any direction within ~Q, we may 
state that all pairs of faces of P~) intersect. That this is so follows from the fact that 
any two nearest-neighbor pairs of particles (whether sharing a particle or not) may 
simultaneously be in contact. 

The further geometric properties of the polytopes P~) are the major object of 
interest in the remainder of this paper. 

2.2. Symmetry Properties 

Perhaps the most obvious questions to ask about the P ~  concern their symmetries. 
First note that the symmetrical cells ~2 (such as shown in Fig. 1) that are required by 
periodicity render any particle displacement ti (system center of mass fixed, of course) 
just as likely as its negative, --t~. Thus the polytope centroid is located precisely at 

tl ---- tz - -  - -  t u : 0 (17) 

It is then easy to see that this centroid will not be a center of inversion symmetry for 
P~") for if it were any set of displacements tl tN that correspond to a point on P~)'s N ,  ~ ' " ,  

surface (that is, contact between one or more particle pairs) would have a correspond- 
ing point --tl  ..... --tN also on P~)'s surface. As Fig. 3 illustrates, however, it is a 
trivial matter to find a set of displacements whose negatives lead to particle overlap, 
and therefore correspond to a point outside P~). 

Nevertheless certain P ~  symmetries can be obtained if the inversion operation is 
combined with suitable reflection operations corresponding to permutation of the t j .  
In particular, if change in sign of all tj is followed by their reassignment to particles 
directly across the center of v-space cell ~Q~ the new point in configuration space again 
lies on the boundary o fP~  ). This is particularly evident in the example shown in Fig. 3, 

2~ 

I I 4-1 I I I~  I I i 
I 2 3 4 5 6 7 8 i 

Fig. 3. Displacements (arrows) for eight rigid rods on a line. Since the four nonvanishing dis- 
placements lead to contacts (2,3), (3,4), (5,6), and (6,7), the corresponding configuration-space 
point lies in polytope Ps(1)'s surface. However, the negatives of these displacements produce overlap 
between rods 4 and 5, and correspond to a point exterior to P~I). Clearly, similar displacement sets 
can be found for rigid disks or spheres. 
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where the combination of operations ends up replacing original rod displacement 
t~ by --tg_ ~ (1 ~ j ~ 8). 

For rigid rods, rigid disks, and rigid spheres stacked in a face-centered cubic 
crystal, all nearest-neighbor pairs of particles will be equivalent to one another. [Here 
we assume that when v = 2 the cell g2 is a rhombus, and when v ~-- 3 it is an equilateral 
rhombohedron, so that the crystal has equal lengths in each direction of periodicity.] 
The �89 faces of P~) then are identical to one another in shape and size and so are 
superposable by translations and proper rotations. However, this does not mean that 
the P ~  are completely regular, for although these faces are each bounded (N >~ 3") by 

1 ( l z ,N)( �89  N _ 1) (18) 
2! 

"edges" of dimensionality v ( N  - -  1) -- 2 (one "edge" for each pair of contact pairs), 
these "edges" are not all of  the same "length"; indeed their content measures relative 
probability for the double-contact coincidence, and this probability surely depends on 
how close the two pairs are to one another, as well as the angle between them. 

The polytope P~) for N rigid spheres placed in a hexagonally-close-packed 
crystal is necessarily less symmetrical than that for the face-centered crystal. Not  all 
nearest-neighbor pairs are equivalent in h.c.p.; some are perpendicular to the 
hexagonal c axis, while others are obliquely inclined to it. It has previously been 
pointed out (8~ that the inherently different polytope geometries for h.c.p, and f.c.c. 
crystals can lead to a difference in free energy for the two, with the former apparently 
the more stable thermodynamically. 

Polytope symmetries can also be reduced for v > 1 by inclusion of vacancies in the 
compressed crystal. A crystal consisting of N particles and N~ nonneighboring mono- 
vacancies will again generate a [ v ( N -  1)]-dimensional polytope, but it will now 
possess only �89 - -  z,N,,~ faces. Furthermore, these faces will fail to be equivalent to 
one another, since their corresponding particle pairs in the crystal can be variously 
arranged relative to the vacancies that are immobilized by the high compression. In a 
similar way, dislocations in three-dimensional sphere crystals will induce polytope 
symmetry lowering. 

2.3. Polytope Face A r r a n g e m e n t  

In order to facilitate discussion of polytope geometry, it is convenient to trace the 
movement of the system point in the full configuration space as small sets of particles 
move about. Thus to every v-dimensional displacement vector ti we assign a corre- 
sponding vN-dimensional vector ti*, all of  whose components are zero except in the 
/-particle subspace, where it has the same components as ti �9 The usual vector opera- 
tions (such as scalar products, and length measure) on these multidimensional vectors 
and their sums are obvious generalizations of the more usual one-, two-, and three- 
dimensional versions. 

We may easily identify the shortest path from the polytope center to  any face, 
say that for neighbors i and j. This path corresponds to the symmetric movement of 
i and j directly toward one another along their line of centers, starting of course from 
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the perfect-crystal arrangement, until they just touch. From Eq. (15) we see that the 
requisite configuration-space vector for this process must be 

t* = t ~ + t ~  (19) i j  

formed from the v-space vectors 

ti = �89 
(20) 

t; = --�89 

Since w~r is a unit vector, the magnitude of t~ ,  the distance from the polytope center 
to any face, must be 

[ t*]i, = (t ti [2 _}_ i t  j [2)1/2 = 2-1/2 (21) 

It is simple to verify that t* is parallel to any outward normal to the (i, j )  face, by 
virtue of being perpendicular to all vectors lying in the face and starting at the t* 
end point; these latter vectors correspond to further motions of any crystal particles 
(center of mass still fixed for the system) so long as the (i, j)  contact is maintained. 
However, it is not true that t* touches face (i, j )  at its centroid, since we should 
expect an average displacement of particles near i and j from their nominal lattice 
positions, when i and j are in contact, in the crystal's complete equilibrium distribution. 

We can now find the angle between any two polytope faces, that is, the angle 
between their outward normal vectors. If  the two faces are (i, j)  and (k, I) contact 
faces, involving four distinct particles in the crystal, one has 

t* ij " tk  = 0 (22) 

because there are no corresponding components of both vectors that are both 
simultaneously nonzero. Therefore pairs of faces of this type (the overwhelming 
majority for large N) are perpendicular. However if the two faces chosen involve a 
shared particle j, say faces (i, j)  and (j, k), the scalar product analogous to (22) will 
have a nonvanishing contribution from the j-particle subspace. The angle 0 between 
the faces is found to satisfy 

cosO- -  t i * ' t ~  
[t*l],~ t~[  (23) 

- - l W i j  " Wj~ 

For rigid rods only one type of triplet is possible and the angle between the faces is 

0 = arc cos(-- �89 = ~rr (24) 

Such linear triplets of course also occur in rigid disk and sphere crystals, and (24) 
also applies to them. But these v > 1 models have "bent" triplets as well, and the 
corresponding angles 0 are smaller than x~r, ~ in some cases less than the very 
common -~rr. In any event, no pair of faces will be parallel, as already acknowledged 
by Eq. (18) (but note the requirement on N preceding that equation). 
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The end points of the vectors t* in the polytope faces are points which we may 
designate by Oij �9 Each of these �89 points lies on the inscribed hypersphere (with 
radius ri~ = 2 -1/2) surrounding the polytope's center O. Because we now have an 
explicit vector representation of the O~j relative to O, we may readily find the distance 
between the points O~. The results are the following: 

(a) If  points O~j and O~ belong to faces whose contact pairs involve four distinct 
particles, the distance is 1. 

(b) If  the points are O~ and Oj~, with particle j common to both faces' contact 
pairs, the distance is (1 § �89 �9 wje) 1/2. 

The minimum distance between face points O~j is therefore 1 for v = 1, and occurs 
for pairs of faces that do not involve a common particle. However, when v >~ 2, the 
minimum distance is �89 and is attained for two contact-pair faces which do have 
a common particle, with the relevant particle triplet in the "most  bent" configuration: 
an equilateral triangle of particles. In all cases the distance between any two points 
O~j exceeds the common distance of these points from the polytope center O. 

On account of this last observation, it is possible to place �89 nonoverlapping 
hyperspheres identical in size with the inscribed hypersphere simultaneously in 
exterior contact with that inscribed hypersphere at the points O~j. Since it is known (9~ 
that for large dimensionality n the maximum number of such nonoverlapping tangent 
hyperspheres varies essentially as exp(~n), c~ > 0, it is clear that as N--~ ~ our 
carefully placed �89 hyperspheres are very sparsely distributed. The polytope faces 
are mutually tangent to the central inscribed hypersphere and the corresponding contact 
hypersphere. The sparseness of the distribution of these latter implies that these faces 
do not stay always close to the surface of the inscribed hypersphere. This last feature is 
reflected in the fact that the radius of the polytope's circumscribed hypersphere 
(determined by the distance from O of configuration space points that have all particles 
jammed tightly together somewhere in [2) for large N is 

r e i r e  ~-~ A~N ~+21/~ (25) 

where constant A, > 0 is N-independent. Thus 

rcirc/ri n ~.~ 21/2 A vN ~+21/~ (26) 

so the polytope develops more and more protuberance as N increases. 

2.4. Bounds on Polytope Content 

The behavior of the high-compression Helmholtz free energy per particle as 
N---~ oo (the so-called "thermodynamic limit") can be inferred from Eq. (14): 

~F~v/N ~ v ln(A/a) --  v ln[(~/~0) - -  1] q- Cv (27) 

where 
C~ = v In v --  lim [In P ~ / N ]  (28) 

N ~  oo 
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Equation (27) represents the beginning of an asymptotic development appropriate at 
high compression, (a~ with succeeding terms proportional to positive integral 
powers of [(~/~0) -- 1 ]. 

The additive free-energy constant Ca for rigid rods can easily be determined by 
integrating the exact Tonks equation of state az, a~) with respect to density. One obtains 

G = --1 (29) 

Similar exact results are not known at present for v > 1. However, reasonably good 
estimates for C2 are available both from molecular dynamics machine computations 
of the rigid disk equation of state, (z,15) as well as the purely theoretical cell-cluster 
technique, m) so we may tentatively conclude 

Ca = 0.10 -1- 0.02 (30) 

For rigid spheres C~ should in principle depend on the type of packing (f.c.c., h.c.p., 
or hybrid), but both the molecular dynamics and cell-cluster methods agree that the 
difference is very small. Thus for any sphere close packing, References 11, 14, and 15 
imply 

C~ = 1.78 ~ 0.02 (30  

There is some evidence (sa2! that 

C3(h.c.p.) < C~(f.c.c.) (32) 

with the difference between them of the order of 10 -a. 
The uncertainties about magnitudes of C~ and the C3's make it desirable to find 

upper and lower bounds on these quantities. This can be done by computing the 
contents of suitable inscribed and circumscribed bodies for P~), respectively. The 
obvious first choices are the inscribed and circumscribed hyperspheres discussed in 
Section 2.3. From the general formula for the content V, of an n-dimensional 
hypersphere with radius r, (16) 

V~(r)- nF(n/2) (33) 

the inscribed and circumscribed bounds 

(34) 

lead, with use of Stirling's asymptote to the gamma function for large N, to the bounds 

~ N -  ~ < ~ ~ 2 1 n  L v �9 

As N - +  oe, we see by comparing (28) with (35) that the use of inscribed and circum- 
scribed hyperspheres succeeds only in bounding the Cv by plus and minus infinity. 
This failure to produce useful bounds is a further reflection of the extreme protuber- 
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ance of the large-N polytopes, and it suggests that similarly protuberant bodies must 
be used to construct sensible bounds. 

Fortunately such protuberant bodies can be found. Indeed, Salsburg ~zT) has 
previously shown that removal of certain faces from P~) for rigid disks and spheres in 
f.c.c, packing followed by extension of the remaining faces till they meet results in a 
larger polytope whose content may be found exactly by elementary means. The trick 
is to retain only those interactions for neighbors which are aligned parallel to two 
fundamental crystal directions for v = 2, or three for v = 3. The situation is illustrated 
in Fig. 4. After transformation to the type of oblique coordinates shown in that figure 
for each particle, the entire configuration integral factors into those for sets of one- 
dimensional rigid rods. [The fixed center-of-mass constraint may readily be taken into 
account, but has no effect as N--~ co.] We refer the reader to Reference 17 for details, 
and merely quote the results: 

[ 2 V ' 3 ,  I 
C2 > In \ ~ l  = --0.7575... (36) 

C3(f.c.c.) >~ In ( 2 ~ e ~  ) = --0.05074... (37) 

4 e  

z2 

o 3  

~ FREE AREA 

5. I / "  ~ ' ~  FOR DISK I 

El 
6e "7 

~,~ CENTERS OF / 
~UNDISPLACED -- - /  

NEIGHBORS 

Fig. 4. Neglected rigid disk interactions for lower bound [Eq. (36)] to C~. The rhombus shown 
is the free area available to central particle 1 when repulsions due to 4 and 7 are disregarded. When 
all interactions for pairs oriented parallel to (1,4) and (1,7) are dropped, the configuration integral 
in the oblique coordinate system Zz, z2 factors into rigid-rod-type configuration integrals, in the 
f.c.c, sphere crystal, only pair interactions along three of the six possible directions are retained. 
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Unfortunately no way is known to systematically improve these lower bounds. 
Also, the method totally fails for the h.c.p, sphere crystal because that system does not 
have three noncoplanar lines of nearest-neighbor particles passing through every 
sphere position, as the f.c.c, lattice does. 

The situation is somewhat brighter so far as upper bounds are concerned. The 
most obvious possibility arises by confining the particles to the so-called "Kirkwood" 
free areas (for v = 2) or free volumes (for any v = 3 crystal). These regions are the 
largest identical convex regions over which the particles may wander from their regular 
lattice sites without particle collisions occurring. They are generated by replacing 
each condition (11) by the more stringent pair of conditions 

�89 § wi~ �9 t~. >~ 0 
(38) 

1 wij ' ti >~ 0 

These new restraints force rigid disks to stay within small regular hexagons, all of 
equal size; in the v = 3 cases the analogous Kirkwood free volumes are dodecahedra. 
Reference 17 again outlines the detailed calculation. The results are 

C2 ~< ln(8/~/3) = 1.5301... 

C3(f.c.c.), C3(h.c.p.) ~< ln(27 ~/2) ~-- 3.6424... 

(39) 

(40) 

The equality of the estimates for the f.c.c, and h.c.p, crystals is due to the fact that the 
Kirkwood regions have identical volumes, as a very simple argument demonstrates. (1~ 

A slight improvement upon these simple upper bounds is possible by using 
Barker's tunnel model idea. (is) Thus, collision conditions (11) are all replaced by pairs 
of conditions (38) except for all pairs parallel to a fundamental crystal direction charac- 
terized by lines of neighboring particles. [Since only one such line direction is required, 
the h.c.p, sphere crystal can be included; such lines of particles occur in the basal plane.] 
The lines of particles along which the true pair collisions are permitted to occur 
constitute essentially a one-dimensional system of particles "in a tunnel." Calculation 
of the relevant "tunnel" partition function requires finding the largest eigenvalue of 
a degenerate integral operator. For rigid disks one ultimately obtains (m 

C2 ~< In[12(~/]-2- ~ /~ ) l  = 1.2869... (41) 

Rudd (1~) has carried out the analogous calculation for the three-dimensional crystals, 
with a common result for f.c.c, and h.c.p, cases: 

Ca(f.c.c.), Ca(h.c.p.) ~ 3.5044... (42) 

The tunnel partitioning of the crystal particles apparently does not grant them 
very much more freedom of motion than do the Kirkwood free volumes, especially 
in three dimensions. A better procedure is to partition the particles into compact 
finite groups, retaining conditions (11) for interactions within each group, but making 
the replacement (38) for interactions between particles in different groups. This has the 
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�9169 
@�9169 

Fig. 5. Triangular partitioning of the rigid disk crystal for establishing upper bound (43) on C2 �9 
The elongated hexagons represent the limits of movement for particles in one of the compact groupings. 

effect of decoupling the groups from one another, allowing upper estimates to the free 
energy in terms of configurational integrals just for the small compact groups. 

Figure 5 shows the simplest rigid disk partitioning, triangular groups of three 
particles. The related configurational integral can be evaluated exactly by techniques 
devised for the cell-cluster theory, (~~ and it leads to the following improved bound: 

C2 ~< 1.1678 

The rhombic grouping of four disks does even better: 

C~ ~< 1.0623 

(43) 

(44) 

and systematic continuation of this procedure with larger and larger compact groups 
would eventually converge onto the exact C2 �9 

In order to achieve results in three dimensions comparable to (43) in tightness as 
a bound, we anticipate that tetrahedral clusters of four spheres would be required. 
Interestingly, the results should differ for f.c.c, and h.c.p, crystals. 

3. G E O M E T R I C  I N T E R P R E T A T I O N  O F  P A I R  C O R R E L A T I O N  
F U N C T I O N S  

3.1. Polytope Sections 

Unlike the situation for systems bounded by impenetrable walls, our crystals 
subject to periodic boundary conditions have spatially constant singlet distribution 
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functions equal to the overall density N f 2 .  The crystalline order manifests itself only 
in the higher-order distribution functions. The important pair distribution function 
p(~)(r), for example, will depend upon the direction of r in a manner consistent with 
the basic symmetry of the crystal involved. 

For certain purposes it is unnecessary to consider the complete function p(2)(r). 
Instead, it is convenient and sufficient to examine the orientational average of  p(2)(r), 
which introduces the radial pair correlation function g(2)(r): 

("% r (p ( ))orientations [ N ( N  - -  1)/~22] g(2)(r) (45) 

This latter function may easily be expressed as a configuration-space average (for 
r > 0): 

,(2 f~.drz  "'" f a d r N  u -- [Zi.j=l 8@ rij)] I~<z=l U(rkz - -  a) 
Av(r)  g(2)(r) = 

N ( N  - -  1) fe drz "'" fa drN 1-I~<,=, U(r,~ - -  a) 

A . ( r )  - -  d V d r )  _ 2rc~/2r~-~ (46) 
dr r(~/2) 

where we have used notation analogous to that for partition function (2). 
In the high-compression regime, as previously remarked, the available configura- 

tion space separates into (N -- 1)I hyperprisms, differing only by particle permutations. 
Since the separate hyperprisms give identical contributions to the numerator integral 
in (46), with a similar circumstance for the denominator integral, we may restrict 
both integrals to one hyperprism H~ ) alone: 

N 

a(2 fI-I))drl "'" drN [i J~----1 ~(r - -  rij)] 
Av(r) g(2)(r) = ' - (47) 

N ( N  - -  1) fn}~) dr1 "'" dru 

Furthermore, the fact that each delta function depends only on the relative distance 
between particles means that the system center of mass may be held fixed in both 
numerator and denominator of (47); the integrals then will span only the [ f i N  - -  1)]- 
dimensional cross section S~ ) of the hyperprism: 

Av(r) g(2)(r) = N ( N  - -  1) S~ ) @) d~(N-1)r 3(r - -  rij) 
i ,=1 

(48) 

Under high compression the variable transformation (12) from r 1 ,..., rN to 
tl ,..., tn becomes appropriate, and in the new basis, polytope P~) is asymptotically 
the correct integration region. In addition we have 

rij ~ w i j .  (r~) + 3rj -- 3ri) 

.r!O ) + a (  39 ) .(tj t~) = % . ~ ~ -  1 %  - (49) 

822/ I / I - I  3 
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Consequently the radial pair correlation function may be expressed thus: 

A(r)  g(2)(r) N ( N - -  1) P~) -e  N i,'=1 *' 

a ( ~ _ _  1)wij" (tj-- ti)]l (50) 

Because the particles on the average deviate so little from their nominal lattice sites 
r~ ~ when the system is nearly close-packed, g(Zl(r) will be different from zero substan- 
tially only when r is in the immediate vicinity of one of the lattice distances [ .(0) ]. 
In other words, it will strongly exhibit the existence of discrete shells of neighbors. 
For this reason we may let z,~ stand for the number ofnth nearest neighbors (z~ = z,), 
and then rewrite Eq. (50) in a form which explicitly indicates the coordination shells: 

zorn[a(  -1 A~(r)g<2)(r) =- (N- -  1)a[(g2fl2o) 11 -~-o -- 1) ( r - -  viol ~] -- n=l -l'n+ll] (51) 

Here, the nth coordination shell peak function gv~ is defined to be 

g~.(x) = r}~" ~ ~ fe~  ) d~'~r-a't~[x -- Wl'n+i" ( t ~ + l -  tz)] (52) 

and we have presumed that particle n + 1 is an nth shell neighbor to particle 1. 
The nearest-neighbor shell peak function g,a(x) has a special prominence by 

virtue of the virial equation of state for v-dimensional rigid spheres: m 

( N -  1)a fipf2 _ 1 + A~(a) g(~>(a -1- 0) (53) 
N 2Y2v 

where the pressure is 

_ ( OFN ] (54) 

The substitution of (51) into (53) yields 

t~Pg2 ,.~ 1 + �89 lgva(--1 + o)[(~/~o) - 1] -~ 
N 

(55) 

where we have used the high-compression identity 

(a/u)l(f2/g2o) -- 11 = rl~~ -- a (56) 

The pressure may also be calculated from the free-energy expression (14) with the 
result 

~p ~ ~(N -- 1) 
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which is the v-dimensional form of the free-volume equation of state.(SJ Comparison of 
Eqs. (53) and (57) gives 

&l(--1 @ O) -- 2 v ( N -  1) (58) 
zv~N 

Since the argument of 8[.-.] in definition (52) ofgv~(x) is linear in the t's, this delta 
function will be nonvanishing only on a [ v ( N - - 1 ) -  1J-dimensional hyperplane 
intersecting polytope P~ .  The integral then gives Kv,~C~(x), where K,n is a positive 
constant and C~n(x) is the cross-sectional "area" of P~) in that hyperplane. [One can 
readily show that all Kvn equal 2-1&] Equation (51) therefore shows us that the high- 
compression radial pair correlation function is synthesized from a set of cross sections 
through the polytope, taken in different directions fo~ the separate shells of neighbors. 
Since 

P~' = f+2 C n(x ) d(K x) (59) 

we have the obvious peak function normalization conditions 

= 1 

Inequality (11) shows that the nearest-neighbor function gvz(x) vanishes identically 
for x < --1. For these values of x, the hyperplane fails to intersect the polytope. 
When x = -- 1, the sectioning hyperplane is exactly coincident with the (1, 2) polytope 
face, so that at this point Cv,(x) discontinuously jumps from zero to a positive value 
equal to the face content. As x increases above --1, the hyperplane moves across the 
polytope, always remaining parallel to the (1, 2) face, and C,~(x) varies accordingly. 
Eventually x will become so large that the hyperplane moves completely across P ~  
and out the other side, at which point, Xmax, C,,(x) has declined to zero and remains 
zero thereafter. Figure 6 offers a schematic diagram of this sectioning process for the 
nearest-neighbor peak. 

The analytic character ofg,l(x) for v = 1 (rigid rods on a line) may now be derived 
by extremely simple geometric means. In this case P ~  is a simplex, as has already 
been pointed out, and the entire family of nonvanishing cross sections C~a(x) for all 
--1 ~ X < Xmax have the same shape as the (I, 2) face, Ca,,(--1). Therefore 

CLI(X ) = K[1 -- (X/Xraa,:)] N-2 (61) 

where K is a suitable positive constant. It is easy to establish that 

Xmax = N -  1 (62) 

Therefore when the number N of particles is very large, 

( x )  N-2 
Cm(x ) = K 1 N -  1 

~-~ K exp(--x) (63) 
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Fig. 6. Family of cross sections C~z(x) for the nearest-neighbor peak ofg(~)(r). The multidimensional 
polytope has schematically been represented as a dodecahedron, and the sectioning hyperplane is a 
conventional plane parallel to the (1,2) face (x = --1). 

by employing the well-known product  representation of  the exponential function. 
K may  be evaluated by compar ison with Eq. (58), and so we conclude that  as N--> 0% 

gla(X) = exp(1 - -  x), x >~ - -1  
(64) 

= 0  x < - - I  

In  conjunct ion with Eq. (51) for g(2~(r), we see that  the known exponential character 
o f  the rigid rod nearest-neighbor distribution function (2~ has a straightforward 
geometric interpretation. 

Unfortunately,  when v > 1 we cannot  deduce geometrically (or any other way) 
the exact N--+ oo analytic form of  gn(x). Nevertheless, we know that  this quanti ty 
always suffers a discontinuity at x = --1 as the sectioning hyperplane enters P~). 
In  addition, some further qualitative features will be established in Sections 4 and 5. 

Consider an uninterrupted row of  m particles in a crystal (v arbitrary), which we will 
suppose are serially numbered  1 to m, with the end particles being nth nearest- 
neighbors (m = n -l- 1 only when v ---- 1). The unit vectors connecting adjacent 
particles in this sequence are equal: 

W12 = W2~ . . . . .  Wm-l , , r~  (65) 

Equat ion (52) shows that  the hyperplane forming the related nth neighbor cross 
sections C,~(x) for  this row is determined by 

0 = x - -  w12" (t~ - -  h )  (66) 

= x - -  w~2" [(t,, - -  t~-x) -+- (t~_l - -  t,,_2) 4- "'" + (t2 - -  tO] 
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The configuration-space vector 

T* tl* + t~ + + * z �9 �9 �9 t ~ , r ~ _ l , m  (67) 

formed f rom the face normals defined by Eqs. (19) and (20) is normal  to the cross 
sections C,~(x) .  The symmetrical  fo rm shown for T* indicates that  this vector is 
inclined at the same angle to each of  t * ,  h*a ,..., t*m_l,,, �9 Consequently,  when the 
hyperplane enters P ~  with increasing x, it does so at the confluence o f  these m --  1 
faces, which is actually a [ v ( N  - -  1) - -  (in --  1)]-dimensional polytope. 

By using the same schematic pictorialization for P~) as a dodecahedron that  
appears in Fig. 6, we have exhibited in Fig. 7 the way in which the sectioning hyper- 
plane enters P ~  for m ~ 2, 3, and 4. When  m = 2, we have the previous case o f  
nearest neighbors for which the hyperplane enters suddenly through an entire face. 
With m = 3, the hyperplane is symmetrically disposed with respect to two faces, and 
entrance occurs through an edge. For  m = 4, involving three mutually intersecting 
faces, the hyperplane enters through a vertex. The significant point  is that  the initial 
rise f rom zero o f  the cross section increases by one algebraic degree for  each extra face 
involved; for rn = 2 there is a j u m p  discontinuity (degree 0), for rn = 3 there is a 
linear increase initially (degree 1), and for  m = 4 the initial behavior  is quadratic 
(degree 2). 

Our  diagrams in Fig. 7 fail to permit representation o f  the si tuation for rows o f  
more than four  particles. Nevertheless, it is clear that  the general-m case produces 
in the actual polytope P~) a cross section whose magnitude initially rises as an (m - -  2)- 
degree curve. No t  only is this in accord with the known behavior o f  the rigid-rod 

GQQ 

Fig. 7. Initial rise of radial pair correlation peaks for successively longer rows of particles. As 
outlined by dashed boundaries, the sectioning "hyperplane" enters the "polytope" at regions of 
decreasing dimensionality as the row length increases from rn = 2. The behavior of the cross section 
magnitudes is indicated by the graphs at the bottom, with a jump discontinuity for rn = 2, linearity 
for m = 3, and quadratic behavior for m = 4. 
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m=2 m=3 rn= 4 m = 5  

Fig. 8. Wood's results for rigid-disk pair correlation along a row of particles. The successive peaks 
are normalized to have the same maximum for convenience. The system consisted of N = 192 rigid 
disks (12 • 16 rectangular periodicity cell) at pDo/NkBT = 40, (~2/D0) - 1 = 0.05. 

system, (2~ but it can be observed as well in electronic-computer simulations of rigid- 
particle many-body systems. Figure 8, for instance, shows some high-pressure rigid- 
disk calculations kindly furnished us by Dr. William W. Wood that were obtained by 
the Monte Carlo method applied to 192 particles. The peak functions for rows of 
m = 2, 3, 4, and 5 disks are shown, and the increasing algebraic degree of the initial 
rises is very obvious. The importance of our geometric point of  view is that it can 
easily identify the reason for this phenomenon without the necessity of  finding an 
exact solution to the many-body problem involved. In retrospect it verifies the intuitive 
suspicion that a row of particles for v > 1 should behave in a rigid-rod-like fashion. 

3.2. Geometr ic  Meaning of the Born -Green-Yvon  Equation 

Now that we have an interpretation of the radial pair correlation function in 
terms of polytope sections, we may proceed with a geometric analysis of the rate of  
change of the sections as they move across the polytope. This will help us to uncover 
the geometrical content of  the Born-Green-Yvon integrodifferential equation/TM 
For the sake of concreteness, attention will initially be confined to the behavior of the 
nearest-neighbor peak; the generalization, however, will be very clear and straight- 
forward after this one special case is worked out. 

We have just established that the sectioning hyperplane enters P ~  through a 
face for the nearest-neighbor peak. Furthermore we recall that for large N the over- 
whelming majority o f  other polytope faces will be perpendicular to this one entrance 
face, say, the (1, 2) face. I f  it were true that all other faces were perpendicular to the 
(1, 2) face, then the magnitude of the cross section would not change (nor would its 
shape) as the sectioning hyperplane moved inward through P~>. After its initial discon- 
tinuity at x = - -  1, the peak function gv~(x) accordingly would be a positive constant. 
This hypothetical situation is illustrated in three-dimensional analogy in Fig. 9. 

The fact that g~(x) is not independent of  x for x > - -  1 [as Eq. (64) demonstrates 
in the v = 1 case], therefore is attributable to contributions of  the few faces not 
perpendicular to the (1, 2) face. The precise angle between the pairs of faces is decisive; 
if the angle between the outward normals is less than �89 the face contributes to a 
rise in gvl(x) as x increases, and if the angle between the outward normals is more than 
�89 the contribution is toward a decrease in gvz(x) with x. 

Figure 10 should aid in formulating a precise statement of  these facts. For a small 
increment Ax in variable x above the face-entering value x = --1, the cross section 
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INTERIOR SECTION 
I PARALLEL TO (1,2) FACE 

i #1,2) FACE 

Fig. 9. Hypothetical P~) geometry, with all other faces perpendicular to the (1,2) face. Interior 
sections in a hyperplane parallel to the (1,2) face all have exactly the same size and shape as that face. 

"EDGE" 
CONTENT 

! 

i /'b,, 

X/ o& 

+ ) \  

Fig. 10. Contribution of a nonperpendicular face [the (c0 face] to cross section rate of change. 
For the case shown, 0~ < �89 the cross section increases as the hyperplane moves deeper into the 
polytope. 
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will have moved a distance 2-x/2 Ax into the polytope. [Recall that the face itself, 
x = --1, is only a distance 2 -z/" from the polytope center (at x = 0).] The change 
in cross section C,z for sufficiently small Ax will consist of additive contributions from 
the "edges" E~ of face (1, 2) formed by intersection with the other faces. Specifically, 

C~1(-- 1 q- Ax) = C~(-- 1) q- 2 -z/2 Ax ~ E, cot 0n -~ O[(Ax) 2] (68) 
c~ 

where 0R is the angle between the outward normals to the (1, 2) face and the (o 0 face. 
This linear estimate merely adds up the content of the small hyperrectangles that are 
created (0~ < 17r) or destroyed (06 > �89 at the edges of C~a(x) as it moves inward from 
x = --1; Fig. 10 shows in three-dimensional version one such thin "hyperrectangle." 
Note that since cot �89 = 0, the faces perpendicular to the (1, 2) face automatically 
give no contribution to (68) in the linear order sljown. 

Next we require a phys!cal interpretation iof the [v(N -- 1) -- 2]-dimensional 
"edges" E~ of the (1, 2) face. More generally, we Shall identify E~(Ax, Axe), the "edge 
length" along which two hyperplane cross sections that are respectively parallel to the 
(1, 2) face and a distance 2-1/3 Ax beneath it, and parallel to the (c 0 face and a distance 
2-1/2 Ax~ beneath this other face, intersect. When the system configuration point lies 
on this more general edge, it is clear that the (1, 2) and the (o 0 pairs have been con- 
strained to the pair separations indicated, and so E~(Ax, Axe) must be proportional 
to the related triplet distance probability. 

I f  the (a) face were perpendicular to the (1, 2) face, then 2-1/2 Ax and 2-a/~ Axe 
would be orthogonal coordinates, and the total polytope content would be obtained 
merely as a double integral of E~ : 

(69) 

However, greater interest attaches to the case of nonperpendicularity. In terms of the 
previously defined angle 0~ between face normals, Eq. (69) can be generalized by 
inclusion of transformation Jacobian csc 0~ for the now-oblique coordinates: 

p~) = d(2-~/~ Ax) d(2-z/2 Ax ) csc O E(Ax, Ax ) (70) 
0 0 

Formula (69) is just a special case of this last expression. But now it becomes clear tha t 

E~(Ax, Axe) (71) 
p~al(Ax, Ax)  -- 2 sin OP~ ) 

is precisely the probability density for simultaneous pair separations Ax and Ax~, for 

V f 1 = d(Ax) d(Ax~)ptS)(dx, Axe) (72) 
0 0 

We have included the superscript (3) since for the cases of importance in Eq. (68), the 
pairs (1, 2) and (~) will share a particIe, and will hence include only three particles 
altogether. 
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Now substitute from Eq. (71) into the linear estimate (68): 

Cvl ( - 1  @ Ax) ~_ C1(--1) @ 21/2/[xP~) E cos Op(a)(Ax = 0, A x  =- 0) (73) 
ct 

Since the nearest-neighbor peak function is 

C~(x) 
g,l(x) = 21/2p~ ) (74) 

we have 

g~(-1 + Ax) - g~(-1)  
Ax = ~ cos 0 p~a)(0, 0) (75) 

c~ 

In the small-Ax limit, the left-hand member of this last relation passes over to an x 
derivative. If  we furthermore use Eq. (23) to express cos 0~ in terms of the unit lattice 
vectors, Eq. (75) becomes 

d in g~l(x) ~=-z 1 ~ '  _(8).. O) 1 ~ '  (3)~., O) 
= - -  __ ( W i l  " W 1 2 )  P i l  I .U, (W12 o %j) P2J tV, (76) 

dx 2 i g~l(-1) ~ g~l(-1) 

The primes on the summations here indicate that particle i is a nearest neighbor of 1 
(but i =/= 2), and that j is a nearest neighbor of 2 (but j 5t= 1). 

Equation (60) assures that g~l(X) is a properly normalized distance distribution 
for the pair (1, 2) of nearest neighbors. The ratio ~.i~'r , O)/g,l(--i) therefore is the 
conditional probability that pair (i, 1) be in contact, provided that (1, 2) is in contact, 

n ( g ) / t ~  and an analogous statement applies to ~.2j ~u, 0)/gvl(--1). With these interpretations 
in mind, we can see that Eq. (76) is the high-density version of the Born-Green-Yvon 
integrodifferential equation, (21) for the left member is (kBT) -~ times the mean force 
acting between particles 1 and 2, and the right member specifies that this mean force 
is due to kinetic impulses provided by the set of neighbors of 1 and 2, with the scalar 
products of w's serving merely to project these collisional forces along the (1, 2) axis. 
[The conventional Born-Green-Yvon equation for hard spheres includes angular 
integrals over triplet conditional probabilities; since we only require distance-depend- 
ent p(a)'s, these angles have been implicitly integrated out of Eq. (76). Furthermore 
the factors �89 in (76) account for inclusion of all pair contacts with 1 and 2, rather than 
just one of them as is ordinarily the case for the Born-Green-Yvon equation.] 

Equation (76) was derived for x = --1, when the relevant cross section C,1 
just begins to enter P~). The generalization to arbitrary x in P~) is utterly straight- 
forward. ,One uses the same type of linear estimate as (68) for the effect on Cvl(x) of a 
further small displacement 2 -t/2 Ax  into the polytope. One finds (x > --1): 

t _ ( 3 ) r .  ._(3) t ' .  dln  g,a(x) 1 ~ (wia �9 %z) Piz tx + 1, 0) 1 ' 
dx -- 2 gvz(x) 2 ~ (%2 " w2j) P2J t~ -}- 1, O) 

�9 j " g ~ ( x )  

(77) 
n t 3 I r  Now ~z ~x ~- 1, O)/g~(x), for instance, is the conditional probability that (i, 1) be 

in contact while the (1, 2) pair has reduced separation x. Of course the physical inter- 



202 Frank H.  Stillinger, Jr., and Zevi W .  Salsburg 

5) 5) 5)4 ) 

Fig. 11. Pair collisions that contribute to the distance distribution for a pair (1,2) of nearest- 
neighbor disks. Pairs (1,3), (1,7), (2,3), and (2,7) tend to drive particles 1 and 2 apart, while the 
others tend to drive them together. 

pretation still persists that the mean force on pair (1, 2) is due to collisions with 
surrounding neighbors. 

Figure 11 shows nearest-neighbor pair (1, 2) as rigid disks embedded in the 
surrounding crystal. One can see from the diagram that for v > 1 the right member of 
Eq. (77) contains both terms which tend to drive the (1, 2) pair together (positive 
scalar product of w's) and terms which tend to drive them apart (negative scalar 
product of w's). 

If particles 1 and 2 had not initially been nearest neighbors, but were instead 
nth nearest neighbors (n > 1), we know that the relevant cross section Cvn(x) would 
not enter the polytope across one of its faces, but along some other direction. It is 
straightforward to show that the only polytope faces not perpendicular to C,,  are 
those corresponding as before to pairs (e~) which include particle 1 or particle 2. In the 
same manner as before we may proceed to deduce the nth shell peak function Born-  
Green-Yvon equation: 

(3Jr ~,f (W12 . W2j) (31r d In gvn(x) _ 1 x~' . Pil ~x + 1, O) 1 P2~ ~x + 1, O) (wil W12) dx 2 ~ gv~(x) 2 j g~(x)  
(78) 

The pl3)'s now specify simultaneous occurrence of the non-nearest-neighbor (1, 2) 
distance, and a precise contact of a third particle with 1 or 2. 

It may be mentioned in passing that analogous (but more elaborate) geometrical 
interpretations are also available for the orientationally unaveraged Born-Green-  
Yvon equation for the pair correlation function. Likewise this equation may also be 
similarly interpreted in the case of higher-order correlation functions. 
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4. EFFECT O F  I N C R E A S I N G  D I M E N S I O N A L I T Y  

A few years ago Metropolis et al. (22) observed a fundamental structural difference 
between rigid-disk and rigid-sphere pair correlation functions under high compression. 
Their Monte Carlo calculations indicated that the nearest-neighbor peak function 
gv,l(x) has negative slope at x = --  1 § 0 for v ~ 2 (disks), but positive slope at the 
same x for v = 3 (spheres). This means that two disks on contact experience a net 
average force due to their surroundings tending to hold them together, but in the case 
of spheres this mean force tends to pull them apart. The sphere function g3.1(x) thus 
passes through a maximum for x > --  1, and reflects a greater tendency in three dimen- 
sions than in two for particles to be localized at regular crystal sites. 

This structural difference has subsequently been confirmed by further Monte 
Carlo calculations by Rotenberg (23) and by Wood. (4~ Also, Larsen and Salsburg (24,z5) 
observed the same phenomenon in the cell-cluster theory for g,a(x). Up to the present 
time, a statement in Reference 22 seemed an apt summation of the theoretical attitude 
toward the special crystal localization tendency exhibited by spheres: "Its occurrence 
in three dimensions is clearly a complex, many-body phenomenon, and we have not 
been able to fully explain it." The missing explanation can at least partially be revealed 
by our geometrical polytope theory. 

The considerations of Section 3 show that the sign of the initial slope of g~,~(x) 
just beyond particle contact is generally established by competition between opposing 
contr ibutions--some polytope faces are oriented so as to increase gv,1 with increasing 
x, others to decrease it. Except for the rigid-rod case, for which only decreasing con- 
tributions occur, it is not at first obvious how the result of  this competition goes as v 
increases through 2, 3, 4 ..... Nevertheless, the trend is determined by rather elementary 
considerations. 

Certain general features ofg,~(x) are clear. Since x < --1 corresponds to overlap 
and thus vanishing of this function, the normalization condition (60) becomes 

1 = g.~(x) dx  (79) 
- -1  

Also, because x -~ 0 corresponds to the nominal lattice spacing in the crystal (i.e., all 
particles at the regular crystal sites), we expect gvl(X) to go quickly to zero for x larger 
than 2 or 3. Thus the second moment  or "width" ofg~l(X ) should not increase beyond 
a number of  order unity, even though v ~ oe. Finally, we shall establish in Section 5 
that g,~(x) passes through only a single maximum. 

In the large-system limit, Eq. (58) gives 

g~i ( -1  + o) = 2~,/zv~ (80) 

I f  zv~, the number of  nearest neighbors, increases faster than v, so that 

!im 2v/z,,~ = 0 (81) 

then the contact value of g~(x) will decline to zero as v --~ oo. The only way this can 
happen while still maintaining normalization (79) and bounded width for a single- 
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maximum nonnegative function is for the initial slope @~1(--1 + O)/~x to become 
positive. Loosely speaking, g~l(x) would then be forced to increase from its very small 
value at contact. 

We must thus inquire into the behavior of  coordination number z,z as v increases. 
The structure of  the densest packing of rigid n-dimensional spheres in Euclidean 
n-space is not generally known. In fact, it has been conjectured c~6~ that for sufficiently 
large n the densest packings are not even lattice packings (that is, not regular crystals, 
but amorphous structures). For  present purposes it suffices to exhibit a hierarchy of 
lattice packings for which z,z is easily determined; any denser packings presumably 
have higher numbers of  nearest neighbors as x increases. 

The relevant sequence of lattices is generated by a simple process that starts with 
rigid rods on a line. As shown in Fig. 12, the linear array of rods in contact may first 
be replaced by disks of equal diameter, then parallel translates of  this line of  touching 
disks may be generated so that as each new line of disks is created, it just fits on top 
of (or below) the previous line. The end result of  the process is the close-packed 
hexagonal array of disks covering the plane. 

Each disk in the new lattice thus formed touches two disks of  the line just below 

((1) R IG ID  ROD A R R A Y  
f I I I I 

(b) LINE OF TOUCHING DISKS 

(C) HEXAGONAL DISK LATTICE 

( 

Fig. 12. Formation of the planar hexagonal disk packing from the linear array of rigid rods. First 
the rods are "expanded" into a linear sequence of touching disks. Then the line of disks is replicated 
by parallel displacements to form further lines of disks just fitting onto lines already placed. The 
arrows indicate the required oblique displacements. 
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it, and the three disk centers form a regular two-dimensional simplex, an equilateral 
triangle. The six nearest neighbors in the disk lattice consist of the two neighbors 
along the original line direction, plus two more each from the line above and the 
line below: 

z2,z -= 2 -k 2(2) (82) 

In order to create a lattice of spheres, art entirely analogous operation is carried 
out. First start with the planar disk lattice shown at the bottom of Fig. 12. Each disk 
is then expanded into a three-dimensional sphere with the same diameter. The resulting 
sphere layer is subsequently replicated by oblique displacements so that successive 
sphere layers are stacked one upon the other. If  these oblique displacements are all 
integral multiples of a single displacement vector, the sphere packing has the face- 
centered cubic structure. Figure 13 indicates the formation of this packing, in which 
each sphere rests upon three others in the layer below to form a regular tetrahedron 
of centers. 

In passing from rigid rods to rigid disks, the oblique displacements (see Fig. 12) 
are at such an angle (60 ~ ) to the original line that after every second replication or 

(a) SIDE VIEW 

(b) TOP VIEW 

Fig. 13. Formation of the face-centered cubic lattice from the planar hexagonal disk packing. 
After the disks in the latter are expanded into spheres, the sphere layer is reproduced by oblique 
parallel translations (shown by the arrows). 
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displacement the disk centers lie directly above the original ones. The top view in Fig. 13 
shows that in generation of the three-dimensional sphere lattice, three successive 
displacements are necessary before sphere centers lie directly above the starting set. 

The twelve nearest neighbors in the face-centered cubic lattice may be divided up 
in a way analogous to (82): 

za.z = z2,z + 2(3) (83) 

First there are the z2,~ : 6 neighbors in the same layer. Then there are the three 
spheres above with which a given sphere forms the regular simplex (tetrahedron) and 
the three below. 

Our procedure may be extended to form a lattice packing of hyperspheres in four 
dimensions. This is done by making each sphere in the face-centered cubic lattice into 
a hypersphere to form the initial "layer" of the four-dimensional packing. As before, 
this layer is subsequently replicated by oblique displacements to form further layers 
that fit on top of one another. Each hypersphere will fit upon four others in the layer 
below, and the five centers will form the vertices of a regular four-dimensional simplex. 
The number of nearest neighbors may be obtained from the analog of relation (83), 
namely: 

z4,~ = z8,1 + 2(4) (84) 

= 1 2 + 8  = 2 0  

By continuation of this process, we obtain a general difference relation satisfied 
by the coordination number z,1 in v dimensions: 

Zv, 1 = Z,a__l, I + 2V (85) 

which represents the general term in sequence (82), (83), and (84). Using z~.~ = 2, we 
find the solution to this difference equation to be 

zv,z = v(v + 1) (86) 

This result verifies the zero limit postulated in Eq. (81), so that the initial slope of 
gv~(x) must indeed become positive as v increases from 1. 

If one employs the known geometrical properties of hyperspheres and simplexes 
in spaces of arbitrary dimensionality, it is easy to show that the lattices generated by 
the above scheme have a packing fraction equal to 

~v /2 

q(v) ~- 2,/2_~v( v + 1)z/~i,(v/2) (87) 

In other words, q(v) is the fraction of v-space interior to the hyperspheres. For v > 3, 
this last expression is actually smaller than the packing fractions listed by RogersJ 27) 
Presumably these more efficient packings have even larger coordinations than zv,~ 
in Eq. (86), but that would only strengthen our argument about the initial slope. 

The rapid increase of z~,~ with v very clearly must lead to increasing particle 
localization at nominal lattice sites. After all, it takes only v + 1 neighbors to trap a 
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Fig. 14. Schematic trend of the first-neighbor peak function g~.l(x) as dimensionality increases. 
For rigid rods, gz.~(x) is a simple exponential, Eq. (64). As v increases, the functions develop positive 
slope at x = --1, and tend to peak more and more sharply at x = 0 (the perfect crystal spacing). 

central particle. As v increases, this is a smaller and smaller fraction of  the total 
number  o f  neighbors, and the ones which will do the trapping are those which have 
wandered most  closely toward the particle o f  interest. With a very large set o f  nearest 
neighbors, then, it becomes very probable  that  any one particle should be t rapped 
close to its lattice site. As v --+ o% we can therefore reasonably expect that  g~,z(x) will 
become narrowly peaked about  x = 0. 3 This trend is illustrated schematically in Fig. 14. 

A similar peaking tendency for  the other gv,~(x) should also obtain as v + Go. In  
view of  the polytope cross section interpretation o f  this set o f  functions, we see that 
for large v the content  of  P~) will be strongly concentrated a round  its centroid. 

5. B R U N N - M I N K O W S K I  I N E Q U A L I T Y  

Thus far, the convexity o f  limiting polytope P ~  has been employed only in the 
most  superficial manner.  The property o f  convexity nevertheless leads to a rather deep 
body  of  geometrical theory.~Zs~ We shall now explore the implication s o f  one particular 
aspect o f  that  theory which has special relevance to the high-compression crystalline 
distribution functions. 

A real-valued function R(x) is said to be concave in the interval [xmm, Xmax] 
if for any xl and x2 in this interval, the following inequality is valid: 

R[(I - -  ).)x 1 @ /~x2] ~ (1 - -  A) R(x1) -t- ,)tR(x2) (88) 

3 On the basis of a simple independent normal distribution of neighbor displacements, one estimates 
that the width of the g~,l(x) peak should be proportional to (ln v) -z/2 as v --+ o% ifEq. (86) is correct. 
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for all 0 <~ )~ ~< 1. In graphical terms, this simply means that a straight line connecting 
two points of the R curve never lie above that curve. If R is concave it can therefore 
have no relative minima. 

The central theorem to which we must appeal is the Brtinn-Minkowski 
theorem, t~9) It asserts the convexity of  a certain hypervolume function in m-dimen- 
sional space that is formed by "addit ion" of two convex bodies B1 and B2 in that space. 
The body B in that space denoted by the "sum" 

B(A) = (1 --  )t)B, + AB2 (89) 

is the set of all points 
r = (1 -- ))r,  + Ar2 (90) 

where r 1 is the position of a point in B1, and r2 is the position of a point in B~. B(t) 
is known to be a convex body; its position and orientation perforce depend on those 
of BI and Bz, but not its size or shape. 

Let V,~[B~] stand for the m-dimensional hypervolume, or content, of body B~. 
The Brtinn-Minkowski theorem states that 

R(,'~) = {gm[B(a)]} 1/ra (91) 

is a concave function of ), in 0 ~< ;~ ~< 1. In other words, 

{V~,,[(1 -- )t)Ba + aBz]} ~/~ >~ (1 -- ;t){V~[Bzl} a/'~ + A{V,,,[B21} a/',' (92) 

We refer the interested reader to Reference 29 for a proof  of the theorem. 
For present purposes Bi and B2 will be two parallel cross sections in polytope 

P~). Thus (aside from a trivial translation dependent upon selection of an origin), 
the set of bodies B(;t) will be generated by connecting any point in B1 to any point 
in B2 by a straight line, and then forming the locus of points that cut that line in the 
length ratio )t: (1 -- ~t). Body B(;t) will then lie in a hyperplane parallel to B~ and B2. 
This method of construction is shown in Fig. 15. 

The bodies Bz, B~, and B(;t) are all [ v ( N -  1) -- 1]-dimensional entities, and so 
we take 

m =  v ( N - -  1) - -  1 (93) 

in the basic inequality (92). 4 Because P~) is convex, BOO lies entirely within the cross 
section COO that its hyperplane forms with P~) (see Fig. 15). Therefore we have 

Vm[C(,~)] >~ V~[g(~t)] (94) 

In conjunction with the Briinn-Minkowski theorem (92), this last result implies 

{V~[C(a)]} ~/m ) (1 - -  ~){gfa[B1]) 1/m -~- )t{V~[B2I} 1/'~ (95) 

Since initial choice of parallel polytope cross sections Bz and B2 was arbitrary, we see 
that the [ v ( N -  1) -- 1]-root of the content of a parallel family of polytope cross 
sections is always a concave function of displacement. 

4 For convenience we may think of Bz, B2, and B()0 as all projected into the same hyperplane 
parallel to each of them. 
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I t 
t I 

t I 

Fig. 15. Application of the Briinn-Minkowski inequality to parallel cross sections of polytope 
P~). B(A) in Eq. (89) is the locus of all points which divide straight-line connectors of sections B1 
and B~ in the ratio A : (1 -- A). For A = 0,1 the body B0 t) is coincident with B1, B2 respectively. 
B(A) is always contained in C(,~), the cross section at position A. 

Section 3.1 demonstrated the proport ionali ty between the various pair  correlation 
contributions g~n(x) and associated cross section contents Cvn(x). A useful test for  
the ergodicity o f  computer  simulations (Monte Carlo or molecular dynamics) o f  
rigid-particle systems under  high compression is that  each quanti ty 

[g,,( x ) ] z /l"(N-a)-l l (96) 

should be a concave function of  displacement x. Of  course these are only necessary 
conditions, and are not  sufficient to prove ergodicity. 

So far as pair correlation in the large-system limit is concerned, the g , ,  themselves 
are o f  interest rather than the high-order roots shown in (96). Since the property o f  
concavity is not  generally preserved upon taking powers greater than 1, we cannot  
assert that  the g~,(x) are concave. However,  the absence of  relative minima in any 
concave function is so preserved, and therefore each component  function g,,(x) of  
g(21(x) will be free o f  relative minima. 

The conditions under which the gv,(x) are free o f  relative minima (i.e., are just  
single peaks) can be extended beyond perfect crystals. We have already noted that  the 
presence o f  immobile vacancies and (in three dimensions) certain dislocations such as 
stacking faults again leads to a convex limiting polytope, al though with reduced 
symmetry. Even with this broad  class of  imperfect crystals the Brt inn-Minkowski  
theorem applies, and the individual pair-correlation components  g~(x)  are all free o f  
relative minima, regardless o f  the number  and arrangement  o f  defects. 5 

5 In the perfect-crystal considerations in Section 3.1, it sufficed to consider an angle-average pair 
correlation function. With defects present it is desirable and possible to generalize the polytope 
cross section representation of pair correlation to individual particle pairs. These pairs can have 
a large number of arrangements relative to a defect, but for each the nonexistence of relative 
minima applies. 

822/z/z-z4 
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Our considerations also admit of a generalization to higher-order correlation 
functions. Let us first consider the case of triplets (i/k), and 

Kz(~)(x (97) ~ij/c\ it ~ XJk) 

will stand for the probability that the pairs (tj) and ( j k )  are simultaneously separated 
by the regular lattice spacings plus xi~. and xj~ respectively (positive constant K is 
irrelevant for present purposes). The triplet probabilities already encountered in the 
Born-Green-Yvon equation analysis are special cases of these quantities (97), but it is 
easy to see that the entire class of such triplet functions may be identified with the 
[v(N --  1) -- 2]-dimensional intersection of the two polytope cross sections belonging 
to pairs (/j) and ( jk ) .  

Suppose that the two relative displacements x~j and x~e in (97) vary in such a way 
that a linear parametric representation in terms of variable s obtained: 

xi~(s) = ~ +/~,js 
(98) 

where the cCs and/3's are constants. Then as s varies, the two cross sections move so 
that their intersection E~-j~ sweeps out a third cross section2 This behavior is illustrated 
in Fig. 16, once again in three-dimensional version. This new cross section is of course 
a convex [ v ( N -  1) -- 1]-dimensional polytope, and the family of intersections E,j~ 
is precisely a family of parallel cross sections in this new polytope. Therefore along 
any path of form (98), the set of triplet probabilities (97) will exhibit no relative minima. 

Bent triplets (i jk) are open to specification by three simultaneous relative displace- 
ments, rather than just the two appearing as arguments of the triplet probabilities (97). 
This more specific set of probabilities might be denoted thus; 

K~(a~(x xik ) (99) ,~ijk'. ij ~ XJk 

and each would be proportional to the [,(N -- 1) -- 3]-dimensional mutual intersec- 
tion Ei~-~ formed by the three hyperplanes through P~) that correspond to the pair 
distances x i j ,  x~k,  and xik �9 If these distances are constrained to follow a linear para- 
metrization 

xij  = o~ij + fiijs 

Xil c = O~ik ~-  ~ileS (100) 

xj~ = o~k + ~jks 

then as s varies, E~k sweeps out a convex [ v ( N -  1) -- 2]-dimensional polytope by 
parallel displacement. We conclude that triplet functions (99) can have no relative 
minima along any path of type (100). 

In the case of an arbitrary n-tuple of particles, probabilities can be defined which 
specify the simultaneous occurrence of a number of relative pair displacements 

6 The hypersurface so swept out will be fiat only if x~ and x~&are linearly related, as in (98). 
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INTERSECTION 
E i j k  

Cross section swept out by the intersection of two other cross sections. The positions of the 
latter are linearly related [Eq. (98)]. 

anywhere from the greatest integer in �89 + 1), up to a maximum o f ( v / 2 ) ( 2 n  - -  v - -  1) 
if n > v. I f  all of these pair distances are linearly parameterized, 

x . ( s )  = o~. + 5 . s  ( I 0 1 )  

(F is a running index for the requisite number of distances), the nth-order probability 
along path (101) will be free of relative minima. This feature, furthermore, is valid 
regardless of the presence of immobile crystal defects. 

6. G E N E R A L I Z E D  E U L E R  T H E O R E H ;  

One of the landmarks of modern geometry was Euler's discovery in 1752 of a 
general linear relation between the number of faces ( f ) ,  edges (e), and vertices (v) for 
any convex polyhedron in three dimensions: 

f - -  e ~- v = 2 (102) 

7 The reader is referred to Chapter 8 in Reference 6 for historical background and a proof of this 
theorem. 
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It was recognized by Sch/ifli a century later that a simple generalization of the Euler 
theorem could be formulated to describe convex polytopes in Euclidean spaces of 
arbitrary dimensionality. We now turn attention to the interpretation and application 
of this generalized Euler theorem to limiting polytopes P~). 

A general D-dimensional polytope ~ v  will be characterized by a set of numbers 
fk(~D), where 0 ~< k ~< D -- 1, giving the number of "k-faces." This set of numbers 
is the generalization of the D = 3 triplet f ,  v, e: 

f2(~3) = f ,  fz(~3) = e, f0(~3) • v (103) 

but in the more general circumstance f~ is a count of the number of constituent 
k-dimensional subpolytopes. In terms of these numbers, the generalized Euler theorem 
states 

D--1  

Z (--  1)~fk('~D) = 1 -- (--  1) v (104) 
k = 0  

for any convex polytope ~D �9 Equation (102) is clearly a special case. Although (104) 
constitutes a necessary condition that a D-tuple of nonnegative integers {tie} describe 
an actual polytope, it is not sufficient--in fact no general criterion is presently available 
to decide which D-tuples satisfying the Euler relation belong to polytopes. 

The enumeration of k-faces for rigid-particle limiting polytopes is straightforward 
in principle. The k-faces of maximal dimensionality D -- 1 [or v ( N -  1) -- 1, in the 
previous notation] are precisely the faces corresponding to the restraint of contact 
between nearest-neighbor pairs. Therefore fD-z will exactly equal the number of 
nearest-neighbor pairs in the system: 

fo-1 = lzvlN (105) 

Similarly, fD-2 enumerates the ways in which two pairs of nearest neighbors may 
simultaneously be in contact, so that 

fo-z = (1/2!)[�89 1] (106) 

except in the case of such trivially small systems that periodicity prevents the simul- 
taneous contacts (N = 1, 2). 

Complete enumeration of the k-faces is elementary for rigid rods, owing basically 
to the fact that the polytope is a simplex. Reference to Fig. 3 shows that with N rods, 
any collection of N -- 1 or fewer neighbor pairs may simultaneously be in contact. 
Under the restraint of j such contacts, the number of degrees of freedom of the system 
has been reduced by j, so that the relevant face is a (D -- j)-face. Elementary combi- 
natories gives (D = N -  1) 

N~ 
fk(Nrods)  ----= ( N -  k --  1)! (k + 1)! (107) 

Except for the transposition of terms, this last result shows that the generalized Euler 
theorem for rigid rods is merely the statement 

(1 - -  1) o+a  = 0 ( 1 0 8 )  

in binomial expansion form. 
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The content of  the generalized Euler theorem, however, is far less obvious in the 
case of  rigid disks and spheres. In these v > 1 systems, thefk for k = D --  1, D --  2,..., 
D --  5 start off obeying the simple combinatorial formula (107) expected for inde- 
pendent contacts, as (105) and (106) illustrate. However, this scheme goes awry at 
k = D --  6 because of a phenomenon without precedent in rigid rods, that is illus- 
trated in Fig. 17. I f  one demands the six contacts around a hexagon of particles 
surrounding a seventh, the entire septuplet experiences a cooperative " jamming" 
effect that reduces the number of  degrees of  freedom not by six, but by eleven ! As 
Fig. 17 also shows, precisely this same jamming would have occurred if the six 
contacts chosen formed a starlike pattern radiating outward f rom a central particle 
to six neighbors in a plane. Hence f n  is augmented at the expense of f6 .  

In assessing the number of  degrees of  freedom available to a cluster of  particles 
subject to a set of  enforced contacts, it is useful to recognize that our high-compression 
limit renders disks equivalent to oriented rigid hexagons (due to the negligible effect 

) ) 

(o) EQUIVALENT"JAMMED" SEPTUPLETS 

(b) SEPTUPLET ROTATION 

Fig. 17. Cooperative "jamming" of particle clusters. In (a), forcing six contacts in either of the 
two ways shown (as solid lines between centers) causes a loss of eleven degrees of freedom. Beside 
translation, the septuplet may rotate as in (b), where particles are shown as their equivalent oriented 
flat-sided bodies. 

822/i/z-14" 



214 Frank H.  St i l l inger ,  Jr., and Zev i  W.  Salsburg 

of curvature), and spheres to oriented dodecahedra. Figure 17(b) illustrates the rota- 
tional freedom still available to seven jammed disks, as a cooperative sliding motion 
of the oriented hexagons. On account of the very small motion amplitudes available 
at high compression, it is consistent to regard the distance between hexagon centers 
unchanged during the sliding. 

It is clear that the jamming phenomenon will occur in a wide variety of contact- 
constraint sets. For rigid disks, Fig. 18 presents two more jammed situations (as well 
as one which careful analysis shows is not  jammed). Rigid spheres present an even 
more varied collection of possibilities, of course. 

Sets of explicitly imposed contacts between nearest neighbors may always be put 
into correspondence with linear graphs on the lattice. Not only is the complete 
enumeration of such graphs unsolved for v > 1, but there is still the general problem 
of deciding how many degrees of freedom a given graph removes (i.e., how much 

(G) UNJAMMED CLUSTER 

(b) JAMMED CLUSTERS 

Fig. 18. Further examples of contact constraints in the rigid-disk system. The disks are represented 
by their equivalent oriented hexagons, and the required contacts indicated by lines between centers. 
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jamming it produces). As Fig. 17(a) demonstrates, graphs fall into equivalence 
classes; the Euler theorem then relates the numbers of those equivalence classes with 
a weight determined by number of lost degrees of freedom. 

The existence of the jamming phenomenon has a direct bearing on the character 
of distance distribution functions for the particles involved. Let G be a graph 
connecting n particle centers, and let p ~ ( x  t (7,) stand for the probability that all 
bonds of G have length given by x (defined as the usual reduced distance, x = --1 
giving contact). As x approaches --1 from above so that the n particles are put into 
contact as specified by G, 

lira p~)(x  [G) > 0 (109) 

if G involves no jamming. In other words, pl~(x I G) behaves qualitatively in the 
same way as a product, or superposition, of pair-correlation functions for the separate 
links of G: 

p~n~(xl G) ~-. const • [g~z(x)] ~ )  (no jamming) (110) 

[/(G) is the number of links, or bonds, in G]. 
On the other hand, if G leads to jamming, the behavior is entirely different. As a 

result of the decreasing freedom of motion of particles as x ---* -- 1, one finds instead 

p~<(x I (7,) ~ const • (x + 1) aIG) (jamming) (111) 

where d(G) is the extra number of degrees of freedom lost above and beyond the 
l(G) that "normally" obtain in an unjammed cluster [d(G) = 5 for the examples in 
Fig. 17]. Thus the jamming phenomenon is associated with a gross violation of the 
superposition approximation for a graph's associated nth-order distribution function. 
Consistent with remarks in Section 3.1 one identifies the geometrical basis for this 
result with a change toward lower dimensionality of the k-face of P~) at which the 
relevant sectioning hyperplane for the distribution function enters the polytope. 

By actually enumerating all k-faces for some simple P~), v > 1, we can quickly 
infer the fantastic geometrical complexity of limiting polytopes for even modest-size 
systems. The most elementary nontrivial case is two rigid disks, shows in Fig. 19(a). 
This system has polytope dimensionality 

D = 2(2--  1) = 2 (112) 

and four independent contact pairs (so that the polytope is merely a planar quadrila- 
teral). One easily verifies that there are four possible pairs of pairs that may simulta- 
neously be in contact; hence 

f 1 = 4  
(113) 

f 0 = 4  

and the Euler relation reads 

--4 + 4 = 1 -- (--1) z (114) 
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O0 G] 0 / 0  

o/o 0/o 
(a) 2 •  

(b) 2 x 2  

Fig. 19. 

(C) 4 x l  

Some small rigid disk systems (expanded for clarity) for which the k-face enumeration is 
carried out in the text. The dashed lines locate the independent pair contacts. 

F r o m  the transparent 2 • 1 system, we pass on to examine the more  interesting 
cases o f  2 • 2 and 4 • 1 rigid-disk crystals, shown in Fig. 19(b) and (c). The polytope 
dimensionality D now is 6. Without  too  much difficulty one obtains the following: 

2 •  4 •  

f s =  12 8 

f 4 =  60 28 

f 3 =  160 56 

f z =  240 68 

f l =  192 48 

f 0 =  64 16 

(115) 
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Not only do these results indicate an extremely rapid increase in polytope complexity 
as the number N of particles increases, but they also illustrate that a compact crystal 
(2 • 2) has more underlying geometrical structure than a long thin crystal (4 • 1) 
with the same number of particles. Doubtless this is due to the more "cooperative" 
(i.e., two-dimensional) nature of the former compared to the essentially linear latter. 

Even by the time one considers the 3 • 3 rigid-disk crystal in a rhombic unit 
cell, the enumeration problem becomes very tedious. The first few k-face counts are 
found to be (D = 16) 

fa5 = 27 

f14 = 351 

f13 = 2,916 

f12 = 17,334 

f l l  = 78,246 

flo = 277,812 

(116) 

We invite the interested reader to extend the list, the missing members of which the 
Euler theorem states must satisfy 

9 

~, (--1)~f~ = --214,308 (117) 
7c=0 

7. P O L Y T O P E  M O M E N T  T E N S O R  

Reduced displacement vectors t~, suitable for description of particle motions in 
the highly compressed crystals, were defined in Eq. (12). For notational simplicity, we 
now introduce the vN-component direct sum vector 

t *  = t l  @ t ~  @ "'" @tN (118) 

which comprises the state of the entire system. The polytope moment tensor T is now 
defined as the canonical average of the dyad t ' t* ,  under the restraint of fixed system 
center of mass: 

f d~Nt*(t-t*) ~(2~=1 ti) 
T : ( t ' t * )  = 

vN * N j ' d  t ~(Zi=zti) 

= [P~)]-I f d~N-~t*(t*t *) (119) 

One of the more interesting aspects of the limiting polytope theory is the relation 
between T and the crystal's elastic properties, as we shall presently establish. 

The moment tensor T is equivalent to the inertia tensor I for P~) if this 
polytope is regarded as a rigid body with uniform mass density and unit total mass. 
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In particular, 

I = (Tr  T ) I  - -  T (120) 

where 1 is the unit tensor. By taking the trace of both sides in this last equation, we 
have 

Tr T = ( v N  - -  1) -1 Tr I (121) 

which then permits Eq. (120) to be rewritten thus: 

T = ( v N  - -  1) -1 (Tr I)l  -- I (122) 

Therefore knowledge of either T or I allows us to find the other. 
The eigenvalues of I are precisely the rotational moments of inertia of the homo- 

geneous rigid body P~) [as well as a single zero eigenvalue due to the fixed-center-of- 
mass constraint in (119)]. The form of Eq. (122) makes it clear that the same principal 
axes which diagonalize I also do the same for T; in that rotated coordinate system 
the v N  eigenvalues T~ of T are arranged along the diagonal, and are simply related to 
the corresponding polytope moments of inertia In : 

r~ = ( ~ N - -  1) -1 I ,  - -  I~ (123) 

If  the rigid-particle crystal were contained by hard reflecting walls, the diagonali- 
zation of T would generally be very difficult. Our use of periodic boundary conditions, 
though, renders the diagonalization easy. As might well be expected with translational 
periodicity, one is obliged to introduce running-wave collective coordinates. Using 
r~ ~ to denote undisplaced particle positions [as in Section 2.1 ], these collective coordi- 
nates may be written as follows in terms of reciprocal lattice vectors k: (a~ 

N 

x(O) : N -1/2 ~ tj 
j = l  

x(k) = (2 /N)  1/2 ~ tj cos(k "rJ ~ 
j = l  

N 

~Ox) ~ (2/N)1/25=1 ~ t~ sin(k �9 r~ ~ ) 

for k :~ 0 

(124) 

By restricting the k's to one-half Brillouin zone, the N real vector collective coordinates 
X and ~ will be independent; furthermore the transformation Jacobian from the tj is 
unity. 

The collective coordinate vector x(O) locates the crystal center of mass. Since our 
analysis of polytope geometry must be carried out under the restraint of fixed center 
of mass, we simply presume that x(O) has some suitable constant value and suppress 
its further consideration. 
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In order to show that the configuration space rotation (124) diagonalizes T, it is 
necessary to compute averages of the type 

N 

(x(k) x(k'))  = (2/N) ~ cos(k �9 r (~ . cos(k' �9 rl~ 
j ,  I = 1  

N 

= (2/N) ~, cos(k �9 rJ~ ' " r! ~ , cos(k' �9 r(~ 
j , 1 = l  

- -  sin(k' �9 r! ~ . sin(k' - r}~ 

N 

= ~K(k -- k') ~ cos(k �9 r(~ t ~ (125) 1/, 1\~i 1 / 
l = 1  

In this expression, ~r(q) is the vector Kronecker delta function 

3x(q) = 1, q =  0 
(126) 

= 0 ,  q= / :0  

By the same procedure, one also finds 

N 

(a(k) a(k')) = ~/c(k -- k') ~ cos(k - r~~ (127) 

(x(k)  ~(k')) = 0 (128) 

Thus T has no off-diagonal terms between different vector members of the x, ~ basis. 
For  v = 1 this completes the diagonalization, but for v > 1, it still remains necessary 
to specify the v-dimensional coordinate system which diagonalizes the dyadic sum 
common to expressions (125) and (127). 

The rigid-disk crystal (v ~-- 2) is sufficiently highly symmetrical that the dyadic 
sum will be diagonalized in a coordinate system with one axis parallel to "propagation 
vector" k, and the other axis perpendicular (transverse) to k. The independent disk 
crystal collective coordinates therefore may be interpreted as standing waves of pure 
longitudinal or transverse character. The situation will be quite analogous for the 
v = 3 face-centered cubic crystal, but with two degenerate transverse, and one longi- 
tudinal, mode for each k. The three-dimensional hexagonal close-packed crystal, 
however, has lower symmetry, and the collective modes will not generally be purely 
transverse and longitudinal in nature (except for special directions of k). 

The fact that the collective coordinate transformation (124) is linear means that 
the condition that any single collective coordinate be constant, e.g., 

x~(k) = const (129) 

corresponds to a fiat hyperplane in the multidimensional polytope space. The proba- 
bility density for this single coordinate, 

P[X~O')] (130) 



220 Frank I-4. $ti l l inger, Jr., and Zevi W .  Salsburg 

will then be proportional to the cross-sectional "area" created by intersection of that 
hyperplane with P~), in exactly the same way that the pair correlation peaks are 
created [Section 3.1]. By virtue of the Briinn-Minkowski theorem [Section 5], it 
follows that p[x~(k)] can have at most a single maximum. In the case of a very large 
crystal, it can be argued that since separate regions should contribute 'independently 
to p[x~(k)], the central limit theorem (sz) would demand that this probability function 
be Gaussian: 

P[X~] = (2rrT~) -~/2 exp(--X~2/2T~) (131) 

Here we have inserted the T eigenvalue corresponding to coordinate X~, since 

(X~ a) = T~ (132) 

Of course, an exactly similar set of relations applies to the % variables. 
The long-wavelength sinusoidal distortions of a large crystal described as a 

deviation of X~ (or ~ )  from the mean value zero may equally well be regarded as a 
thermally excited elastic wave. For that reason we may relate the small-k eigenvalues 
T~ to the isothermal elastic constants for the crystal. This in turn implies a relation 
between elasticity and polytope moments of inertia via Eq. (123). 

These elasticity relations are easy to exhibit for the rigid-disk crystal. In that 
system, a displacement field u(r), which does not alter the system area, causes the free 
energy to change isothermally by an amount (s) 

1 
SFN{u} = ~-  f d~r{2Ae,e,(u~ + u~) 2 § Aee,,[(u~, -- u~) 2 § 4u~u]} (133) 

Here, the two independent elastic constants are denoted by A~.~, and Ar and the 
ui~. are the symmetric strain tensor components. (3z) In the high-compression regime, 
it has been established (8) that 

2[(sg/f2o)- 112 
(134) 

Aee," _ bNkBT 
[ (~9/~o)-  112 

where b is a positive constant of order unity (known at present only approximately, 
by the cell-cluster technique).(8) The displacement field for a given collective coordinate 
may be inserted in (133) to give the corresponding free energy; then the Boltzmann 
factor 

exp{--fi ~FN} (135) 

is required to agree in exponent with Gaussian form (131). 
The set of reduced disk displacements 

tj ----- (2/N) z/2 Xz cos(k �9 r~~ (136) 
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amounts to a longitudinal wave with collective coordinate amplitude X~, and the 
associated displacement field is 

u ( r )  - axz ( 2 N ) 1 / 2 ( ~ 0 -  l) c o s ( k ' r ) ( k )  (137) 

If this last expression is utilized in (133) for SFN, one eventually finds that the band of 
"longitudinal" eigenvalues (subscript/)for rigid disk tensor T has the following small-k 
behavior: 

2 
T~(k) ~ a2(1 + b)kZ (138) 

A similar calculation for "transverse" eigenvalues (subscript t) gives 

1 
T~(k)--~ 2a~bk2 (139) 

Reference 8 indicates that b should be roughly 0.5, so that for a given small k, the 
longitudinal eigenvalue should exceed its transverse counterpart. 

The same sort of small-k eigenvalue calculation may be carried out in one dimen- 
sion (one elastic constant--the linear compressibility) or in three dimensions (three 
elastic constants for f.c.c., six for h.c.p.). Although the precise numerical coefficients 
will differ from case to case, the inverse-square dependence on k is quite general 
irrespective of v. This feature causes the Gaussians (131) to become very broad as 
k --~ 0. The family of polytope cross sections for a small-k collective coordinate direc- 
tion is therefore very "strung out," that is, the polytope is very long in these directions. 

If  one were able to compute the exact eigenvalue spectrum for crystals at all 
k's, a reversal of our argument would yield the entire nonlocal linear elastic response 
characteristics. This features should eventually prove valuable in understanding sound 
dispersion in anharmonic solids. 

The inverse to collective coordinate transformation (124) is 

tj = N-1/2X(0) -t- (2IN) 1/~ ~ [cos(k .r~ ~ x(k) -- sin(k .~0,) ,(k)] (140) 
k ~ 0  

Under the usual restraint of fixed system center of mass Ix(0) = 0 for convenience], 
we may calculate the displacement correlations for high-compression crystals thus: 

2 
(tits) = ~ ~ [cos(k �9 r (~ . cos(k �9 r~~ x(k)) 

k:~0 

-j- sin(k, r(~ sin(k �9 r~~ 6(k))] j - 

2 
---- -~ ~ cos(k �9 r~~ x(k)) (141) 

k r  

As a special case we may set j = l, to obtain the quadratic displacement tensor for a 
single particle, 

2 
(t~t~-) = ~ k~o (x(k) x(k)) (142) 

the trace of which will give the Debye-Waller factor. (3z) 
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As N goes to infinity in such a way that all crystal dimensions hkewise increase, 
the k sums in (141) and (142) pass to integrals formally: 

2L--~!fd~k (143) 

where the integral should be carried out over one-half of the Brillouin zone ~-. The 
inverse-square behavior of the eigenvalues, illustrated by (t38) and (139), implies 
that the mean-square deviation of rods and disks diverges (in the large-crystal limit), 
but is finite for rigid spheres. 

The relative mean squared displacement of two particles may be written 

4 j~ )]( ( ) x(k)} ( ( t j  - -  tz ) ( t  ~ - -  t t ) }  = ~ ~ [1 - -  c o s ( k  �9 r (~ • k 
kvaO 

_4 
f d"k[1 -- cos(k �9 r~~ x(k)} (144) 

T 

In the case of rods and disks the integral is now convergent on account of the bracketed 
trigonometric factor going to zero at the origin. But it is easy to show that for large 
r~ ~ the result from (144) will be asymptotically proportional to r} ~ for rods, and to 
In r~ ~ for disks, though it remains bounded with r~ ~ for spheres. This is the basis for 
the allegation (34) that no long-range order can exist as an infinite-system property for 
rods and disks. We have therefore established a further connection between potytope 
geometry and crystalline order through the moment tensor T. 

8. O P E N  O U E S T I O N S  

The elementary geometrical theory of limiting polytopes has now been outlined. 
We conclude this survey with a list of unsolved problems in this field. By presenting 
this list, we hope to capture the interest of scholars who by training are able to constri- 
bute to a deeper understanding of the fascinating geometrical basis of the venerable 
rigid rod, disk, and sphere models in statistical mechanics. 

A. As already mentioned in the Introduction, the principal omission in the 
present high-compression theory is a proof of commutability for the limits N--~ ov 
and ~Q--~ ~0.  There seems to be no reason to doubt that intensive quantities (such 
as equation of state, and distribution function peak shapes) established as infinite-N 
limits of P~) properties are indeed the correct properties for infinite systems, but a 
rigorous demonstration will likely demand considerable mathematical ingenuity and 
sophistication. 

B. Section 2.4 exhibited a sequence of upper free energy bounds which converge 
to the exact free energy. Procedures for obtaining equally tight lower bounds are 
lacking at present. Although we have seen that circumscribed hyperspheres about the 
P~) are useless in providing a finite lower bound on free energy per particle as N--- 0% 
possibly the smallest circumscribed hyperellipsoid might succeed, owing to its ability 
to follow the polytope in the latter's "long" directions. Alternatively, one might be 
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able to bound P~) from above by finding the content of the maximal polytope with the 
same number of faces and rin. 

C. Can the relative stability of the face-centered cubic and the hexagonal sphere 
crystals be established purely through geometrical polytope properties? Also, can 
the sign of the spontaneous hexagonal crystal distortion be similarly determined? 

D. The conclusion that distribution function components have single maxima, 
which follows from the Brtinn-Minkowski theorem, is a rather weak constraint. It is 
desirable to find more powerful conditions, possibly even bounds, from information 
available about the polytope geometry. 

E. What are the diameter and minimum width of the P~)? In particular, do the 
directions of the former (as implied by the results of Section 7) coincide with collective 
coordinate axes of minimum positive wave-vector magnitude k? 

F. It is easy to show that the cross-sectional "area" genereated by a hyperplane 
(moving by parallel displacement) through a D-dimensional polytope consists piece- 
wise of polynomial portions of degree D or less in the displacement variable. By 
analogy with the Yang-Lee general grand partition function theory, (~5) it seems attrac- 
tive to examine the limiting distribution of polynomial zeros (in the complex plane for 
the displacement variable) as system size tends to infinity. 

G. The fact that the number of k-faces, f k ,  for the simplectic ~NP(1) is merely a 
binomial coefficient [Eq. (107)] implies that as N becomes very large, fk becomes 
essentially Gaussian for k near N/2. The maximum number of k-faces is then sharply 
attained at k equal to the nearest integer to N/2. Do similar results apply to the rigid 
disk and sphere fk? Is it possible that an appropriate distribution of crystal vacancies 
(e.g., all in one half of the crystal) could render fk bimodal? 

H. Although we have indicated that the eigenvalues of moment tensor T vary 
as k -2 for small wave vectors k, it still remains an open question as to how one could 
calculate the details of the entire spectrum, even for the simple rigid rod system. The 
strong analogy between the phonons in harmonic crystals and the eigenfunctions of T 
suggests that the Brillouin zone boundaries should be extremal points for the various 
bands of T eigenvalues; one may in fact eventually be able to develop a theory of the 
van Hove type (~6) for the singularities in the eigenvalue density. 

/. How do isolated vacancies affect the eigenvalues and eigenfunctions of T? 
Can a group of one or more vacancies have associated with it a "localized mode" 
analogous to those in harmonic lattices with light defect particles? (37) 

J. What is the nature of the eigenfunctions of the tetradic displacement tensor 
(t*t*t*t*)? Do they describe the mutual scattering of pairs of displacement waves? 

K. What are the topological properties of the linear graphs formed by the 1-faces 
of limiting polytopes? In particular, do they possess Hamiltonian circuits (each 
vertex visited once and only once)? 

L. Can the "cell-cluster" expansion for polytope content (1~ be proved to converge 
(in the N--+ oe limit) for v > 17 
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